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Self-consistent phonon approaches for the hydrogen bond chain
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~Received 11 December 1996!

The hydrogen bonded ammonia chain model is studied by means of the standard self-consistent phonon
approach and two modified versions. The effective crystal constant, force constant, free energy, and ratio of the
first-order free energy to the zero order as a function of temperature are numerically obtained with the three
approaches, and then compared. The standard approach gives the lowest free energy. Violation of the convex-
ity is found in one of the modified approaches near the temperature which is regarded as the melting tempera-
ture. @S1063-651X~97!06704-4#

PACS number~s!: 87.15.By, 87.15.Kg, 63.70.1h
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I. INTRODUCTION

Self-consistent phonon approaches~SCPAs! have been
widely used in solid state physics to study the effects
anharmonic potentials on thermal conduction and expan
of solids @1,2# and structural phase transitions@3#. The con-
formation of biological macromolecules is, to a large exte
determined by hydrogen bonds, Coulomb interactions,
van der Waals interactions, which are weaker than chem
covalent bonds. Under these forces atoms or chemical gro
in a macromolecule may undergo motions of a large am
tude at a physiological temperature, and anharmonic term
potentials can make a significant contribution to the therm
dynamic properties of the macromolecules, such as the
cific heat of a crystalline protein. The SCPA then provide
useful tool. An example of the succsessful usage of SCPA
the field of biophysics is the calculation of normal modes
biological macromolecules including DNA molecules b
Prohofsky and co-workers@4#. Compared with the conven
tional phonon perturbation theory, the SCPA has a lar
scope of applicability. As verified in experiments of low fr
quency Raman scattering and inelastic neutron scatterin
a low temperature the chemical groups in a DNA molec
move with a relatively small amplitude. The vibration
modes of DNA molecules at low temperature and their sh
with temperature calculated by Prohofsky and co-work
agree with the spectral measurements of many spectral
at low frequencies.

Efforts have been made to extend the method to the p
lem of DNA denaturation or melting@5#. As is well known in
quantum crystal theory, the SCPA is inadequate to desc
the melting of solids@6#. To overcome this limitation, Pro
hofsky and co-workers, introduced a new self-consistent
placement condition~SCDC! and proposed a modified sel
consistent phonon approach~MSPA! @7#. Using the MSPA,
they studied a simple model of the hydrogen bonded am
nia chain@8#. Although it is an imaginary system, hydroge
bond chains or rings do widely exist in nature, especially
biological systems. Examples are short-lived chains in wa
organic solutions or hydrate crystals, and short structural
ter chains in enzymes@9,10#. There are also hydrogen bond
ing networks, for which the model may provide an appro
mation for a special dimension@10#. With this ammonia
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chain model we shall make a comparison between SCPA
MSPA.

The paper is organized as follows. In Sec. II we derive
conventional self-consistent condition for the force const
and displacement based on the Gibbs-Bogoliubov inequa
and give the self-consistent condition used in MSPA and
one used in Ref.@11#. In Sec. III some numerical compariso
is made among the three kinds of self-consistent conditio
Finally, in Sec. IV we make a few concluding remarks. Som
mathematical derivation is included in the Appendix.

II. THREE VERSIONS OF THE SELF-CONSISTENT
PHONON APPROACH

In the ammonia chain model of Ref.@8#, ammonia mol-
ecules are displaced along an axis on which two nitrog
atoms of neighboring amimonia molecules form an H bo
described by the Morse potential

V~r !5V0$12exp@2a~r2R0!#%
22V0 , ~1!

whereV053.48 kcal/mol,R053.37 Å, anda51.22 Å21.
The Hamiltonian of the system is

H5(
n

F pn22M
1V~yn112yn!G , ~2!

whereM is the mass of the ammonia molecule, andyn the
position of the nth molecule. In order to make a sel
consistent harmonic approximation, we consider a t
Hamiltonian

H05(
n

F pn22M
1
1

2
f~xn2xn21!

2G2NV0 , ~3!

wherexn is the displacement of thenth molecule from its
equilibrium position in the harmonic chain. Assuming th
lattice constant for the harmonic chain described byH0 to be
RT , which is to be fixed later, we relatexn to yn through

xn2xn211RT5yn2yn21 . ~4!

The free energyF0 of the trial system is
4531 © 1997 The American Physical Society
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F05b21(
k
ln@2sinh~ 1

2b\vk!#1NV0 . ~5!

According to the Gibbs-Bogoliubov inequality, the free e
ergyF of the original system satisfies

F<F15F01^H2H0&0 , ~6!

where we have used the notation

^u&0[
Tr@uexp~2bH0!#

Tr@exp~2bH0!#
.

In fact,F1, giving the upper bound of the actual free ener
F, is the first order of the cumulative expansion ofF with
respect to the trial system. The lower the free energyF1, the
closer is the trial system to the real one. So minimizingF1
optimizes the approximation. Moreover, the inequality c
also be taken as a validity criterion for different approxima
trial Hamiltonians. MinimizingF1 with respect to its two
parametersf andRT , we have

]F1

]f
50, ~7!

]F1

]RT
50, ~8!

which are the self-consistent conditions for the force cons
f and displacementRT . Taking advantage of the harmon
system, we can calculate

^H2H0&05N^V~y22y1!&02NfD/2, ~9!

where the correlation functionD is defined as

D5^~x22x1!
2&0 . ~10!

Using the formulas derived in the Appendix, we have

D5
2\

NM(
k

vk
21coth~ 1

2b\vk!sin
2~ 1

2 kRT!, ~11!

^V~y22y1!&05expSD2 ]2

]j2DV~j!U
j5RT

[exp~ 1
2 D]j

2!V~RT!.

~12!

As given in the Appendix, the dispersion relation of the on
dimensional~1D! harmonic system is

vk
25

4f

M
sin2~ 1

2 kRT!. ~13!

From Eqs.~5! and ~13! we have

]F0

]f
5(

k

]F0

]vk

]vk

]f
5
1

2
ND, ~14!

where Eq.~11! has been used in deriving the last equali
Thus, from the definition~6! of F1 and Eqs.~7!, ~12!, and
~14!, we find
-

n
e

nt

-

.

]F1

]f
5
N

2

]D

]f
@exp~ 1

2 D]j
2!V9~RT!2f#50, ~15!

or

f5exp~ 1
2 D]j

2!V9~RT!. ~16!

The HamiltonainH0 is independent ofRT , soF0 would
be also. Under the periodic boundary conditio
kRT52p12pn/N, n51,2, . . . ,N. A direct estimation of
F0 from Eq. ~5! will also show its independence ofRT , i.e.,
]F0 /]RT50. From Eqs.~8! and ~12! we find

]F1

]RT
5NexpSD2 ]2

]j2DV8~RT!50. ~17!

Equations~16! and ~17! are self-consistent conditions t
determine the trial harmonic Hamiltonian. Using a Four
transformation, we may express them as

f5
1

2pE dqexpS 2
D

2
q2D E duV9~RT1u!eiqu

'E
«2RT

1`

duexpS 2
u2

2D DV9~RT1u!Y E
«2RT

1`

du

3expS 2
u2

2D D , ~18!

E duexpS 2
u2

2D DV8~RT1u!50, ~19!

where« is the truncation parameter for a hard core. The t
conditions~18! and ~19! have the physical meaning that th
effective force constant is not the local force constant at
potential minimum, but the thermodynamical average
force constants, and the equilibrium position is determin
by averaging force. That is, f5^V9(RT)&0, and
^V8(RT)&050. They are coupled with each other, and mu
be solved self-consistently.

In the MSPA, the equilibrium position is instead dete
mined by

V@RT1m~T!#5V@RT2m~T!#, ~20!

where m(T) is the half-width of the weight function
exp(2u2/2D), i.e., exp(2m2/2D)51/2, and is regarded as
classical oscillatory amplitude. In this way, the equilibriu
position is taken at the midpoint of two classical turnarou
points fixed bym @7#.

In Ref. @11#, discussing the dissociation of a hydroge
bound in a dimer molecule, such as an ammonia dimer ba
on SCPA, Galindo and Sokoloff employed another differe
self-consistent condition for the equilibrium position, i.e.,

d

dRT
^V~RT!&050. ~21!

This version of SCPA shall be referred to as the revis
self-consistent phonon approach~RSPA!. The previous con-
dition ~19! implies that
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d

dRT
E

«2RT

1`

duexpS 2
u2

2D DV~RT1u!

5expS 2
~«2RT!2

2D DV~«![d~«!. ~22!

When u«2RTu@D, e.g., for the case without a hard core
d(«)'0. The difference between SCPA and RSPA is ve
small.

In Sec. III we shall compare these three kinds of se
consistent conditions numerically.

III. NUMERICAL COMPARISON

As in Refs.@8# and @11#, the Einstein approximation for
the phonon spectrum is also adopted in our calculation.
though the Morse potential already includes some hard c
effect @12#, a hard core« was set in Refs.@8# and @11#. In
order to make a better comparison, we consider both ca
with, as well as without, a hard core. In Ref.@8# no hard core
« was explicitly given, while in Ref.@11# a hard core of
«52.8 Å was chosen. To reproduce results similar to t
references we set«52.5 Å. Results corresponding to the
three different equilibrium position conditions~19!, ~20!, and
~21! are marked with ‘‘S,’’ ‘‘ M ,’’ and ‘‘R,’’ respectively.
Numbers ‘‘0’’ and ‘‘2.5’’ are used to distinguish the cas
without a hard core from that with a hard core.

~i! Thermal expansion. The effective crystal constantRT
as a function of the temperatureT is plotted in Fig. 1.
A sharp growth ofRT is found for MSPA with«52.5 Å,
indicating a ‘‘reasonable’’ melting temperature around 37
K. When the temperature is higher than 377 K, no se
consistent solution exists for MSPA. For SCPA and RSP
with «50 a comparable sharp growth inRT is seen at a
temperature near 1300 K, which is much higher than 377

FIG. 1. Dependence of the effective chain crystal constantRT

on temperature. Curves are labeled by ‘‘S,’’ ‘‘ M ,’’ and ‘‘R’’ for
SCPA, MSPA and RSPA, and by numbers ‘‘2.5’’ and ‘‘0’’ for the
corresponding cases with and without a hard core of«52.5 Å,
respectively.
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For «52.5 Å both SCPA and RSPA show that the syste
just undergoes a linear thermal expansion with increas
temperature, and no melting happens in the temperature
gion considered.

As discussed in Sec. II, for«50 RSPA almost coincides
with SCPA. Taking typical valuesRT54.0 Å andD50.4
Å2, we have estimatedd(0)'1029 andd(2.5)'0.02. This
explains the difference between SCPA and RSPA see
«52.5 Å. At a very low temperature,D is rather small, so
the difference is also significantly reduced.

~ii ! Effective force constant. In Fig. 2 we plot the effectiv
force constantf as a function of the temperatureT. As far as
melting is concerned, Figs. 1 and 2 are consistent. At
melting temperature a sharp drop inf is seen. Generally, the
MSPA harmonic chain is much softer than the other tw
Furthermore, both MSPA and RSPA show an unreasona
growth of f with increasing temperature atT.500 K for
«52.5 Å.

~iii ! Free energy. The free energyF1 as a function ofT is
shown in Fig. 3. In the low temperature region~0–200 K!,
three approaches give approximately the same free en
for both hard core parameters. When the temperature
creases, the discrepancy among the three approache
comes prominent. The MSPA gives a free energy mu
higher than those of SCPA and RSPA, and the SCPA alw
gives the lowest free energy. If we regard the Gibb
Bogoliubov inequality as a criterion for the validity of ap
proximation, the MSPA is the poorest. Moreover, near
MSPA melting temperature the MSPA free energy for bo
«50 and 2.5 Å violates the convexity condition, exhibitin
an unphysical negative special heat.

~iv! Ratio of ^H2H0&0 to F0. RegardingF1 as the first-
order cumulant expansion, we plot the ratio^H2H0&0 /F0 as
a function ofT in Fig. 4. In a wide temperature region th
absolute value of this ratio is within 0.05 for SCPA an
RSPA. On the contrary, the ratio is beyond 0.2 near
MSPA melting temperature 377 K. Higher-order term
should be very important for MSPA.

FIG. 2. Effective force constant as a function of temperature
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IV. CONCLUSION

We have compared three self-consistent phonon
proaches: SCPA, MSPA, and RSPA, which differ from ea
other in the condition for the effective crystal constant.
low temperature the three approaches give almost the s
result. The SCPA and RSPA, giving a very high temperat
for a rapid lattice softening, are inadequate for describ
melting. Although MSPA is able to provide a reasonab
melting temperature, the approach itself, violating the c
vexity condition for free energy near this melting tempe
ture, is not valid for that temperature region. To describe
phenomenon of melting new approaches have to be de
oped.

FIG. 3. Comparison of free energy as a function of temperat
Curves from top, in succession, are MSPA with«52.5, MSPA with
«50, overlapping curve of SCPA and RSPA with«50, RSPA
with «52.5 and SCPA with«52.5, respectively.

FIG. 4. Dependence of the ratio^H2H0&0 /F0 on temperature.
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APPENDIX

According to the theory of lattice dynamics@13#, we rep-
resentxm andpm as

xm5(
k

S \

2NMvk
D 1/2~ak†e2 imkR1ake

imkR!,

pm5(
k
i S \Mvk

2N D 1/2~ak†e2 imkR2ake
imkR!, ~A1!

where we have denoted the lattice constant byR instead of
RT . Substituting Eq.~A1! into the Hamiltonian~3! and drop-
ping the trival termNV0, we find

H05(
k

1

2
\vk~ak

†ak1
1
2 !1(

k

2\f

Mvk
sin2~ 1

2kR!~ak
†ak1

1
2 !

[(
k

\vk~ak
†ak1

1
2 !, ~A2!

where in writing the last equality we have deduced the d
persion relation~13!.

Defining

dk5S \

2NMvk
D 1/2~e2 imkR2e2 inkR!, ~A3!

we have

xmn5xm2xn5(
k

~dk* ak1dkak
†!. ~A4!

Thus,

Dmn[^xmn
2 &0

5(
k

(
l k

udku2^ l ku~akak
†1ak

†ak!u l k&e2b~ l k1 1/2!\vk/Zk

5(
k

11e2b\vk

12e2b\vk
udku2, ~A5!

whereZk is defined by

Zk5
e2 ~1/2! b\vk

12e2b\vk
. ~A6!

From Eqs.~A3! and ~A5!, we obtain

Dmn5
\

NM(
k

1

vk
coth~ 1

2 b\vk!$12cos@~m2n!kR#%.

~A7!

By noticingD5D21 Eq. ~11! is verified.
Let us introduce

e.
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gk5dk
]

]j
[dk]j .

We then have

^exp~xmn]j!&05K expF(
k

~gk* ak1gkak
†!G L

0

5)
k

^exp~gk* ak1gkak
†!&0 , ~A8!

where

^exp~gk* ak1gkak
†!&05

1

Zk
(
nk50

`

^nkuexp~gkak1gk* ak
†!unk&

3e2b~nk1 1/2!\vk. ~A9!

Using the formulas

eg* a1ga†5eg* aega†e~1/2! ugu2, ~A10!

ega†un&5 (
m50

`
1

m!
~g!mS ~m1n!!

n! D 1/2um1n&, ~A11!
,

-
n-
we obtain

^nuexp~g* a1ga†!un&5e2 ~1/2! ugu2(
m

ugu2m
~m1n!!

~m! !2n!
.

~A12!

By means of the binomial expansion

~12x!2m215 (
n50

`
~m1n!!

m!n!
xn, ~A13!

from Eqs.~A12! and ~A13! we have

^exp~gk* ak1gkak
†!&05expF ugku2S 2

1

2
1

1

12e2b\vkD G
5exp@ 1

2 coth~
1
2 b\vk!ugku2#. ~A14!

Finally, we reduce Eq.~30! to

^exp~xmn]j!&05expF 1
2(

k
coth~ 1

2 b\vk!ugku2G
5exp~ 1

2Dmn]j
2!, ~A15!

which is the same as Eq.~12! for D5D21.
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