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Self-consistent phonon approaches for the hydrogen bond chain
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The hydrogen bonded ammonia chain model is studied by means of the standard self-consistent phonon
approach and two modified versions. The effective crystal constant, force constant, free energy, and ratio of the
first-order free energy to the zero order as a function of temperature are numerically obtained with the three
approaches, and then compared. The standard approach gives the lowest free energy. Violation of the convex-
ity is found in one of the modified approaches near the temperature which is regarded as the melting tempera-
ture.[S1063-651X97)06704-4

PACS numbg(s): 87.15.By, 87.15.Kg, 63.78.:h

I. INTRODUCTION chain model we shall make a comparison between SCPA and
MSPA.
Self-consistent phonon approach€CPAS have been The paper is organized as follows. In Sec. Il we derive the

widely used in solid state physics to study the effects ofconventional self-consistent condition for the force constant

anharmonic potentials on thermal conduction and expansiofind displacement based on the Gibbs-Bogoliubov inequality,

of solids[1,2] and structural phase transitiofJ. The con- and give the self-consistent condition used in MSPA and the

formation of biological macromolecules is, to a large extentone used in Ref11]. In Sec. Il some numerical comparison

determined by hydrogen bondS, Coulomb interactionS, an&ﬁ made among the three kinds of self-consistent conditions.

van der Waals interactions, which are weaker than chemicdfinally, in Sec. IV we make a few concluding remarks. Some

covalent bonds. Under these forces atoms or chemical groufgathematical derivation is included in the Appendix.

in a macromolecule may undergo motions of a large ampli-

tude at a physiological temperature, and anharmonic terms in Il. THREE VERSIONS OF THE SELF-CONSISTENT

potentials can make a significant contribution to the thermo- PHONON APPROACH

dynamic properties of the macromolecules, such as the spe- . . :

cific heat of a crystalline protein. The SCPA then provides a In the ammonia chain model of_Re[B], ammonia mol-

useful tool. An example of the succsessful usage of SCPA iﬁCUIeS are (_:ilsplac_ed alo_ng an axis on which two nitrogen

the field of biophysics is the calculation of normal modes foratoms of neighboring amimonia molecules form an H bond

biological macromolecules including DNA molecules by d€scribed by the Morse potential

Prohofsky and co-workergt]. Compared with the conven-

tional phonon perturbation theory, the SCPA has a larger

scope of applicability. As verifie_d in egperiments of low _fre— where Vy=3.48 kcallmol,R,=3.37 A, anda=1.22 A~1.

guency Raman scattering and inelastic neutron scattering, #he Hamiltonian of the system is

a low temperature the chemical groups in a DNA molecule

move with a relatively small amplitude. The vibrational p2

modes of DNA molecules at low temperature and their shifts H=>, [ﬁ +V(Yn+1—Yn)

with temperature calculated by Prohofsky and co-workers n

agree with the spectral measurements of many spectral lines ) _

at low frequencies. whe_rgM is the mass of the ammonia molecule, andthe
Efforts have been made to extend the method to the progRosition of the nth molecule. In order to make a self-

lem of DNA denaturation or meltings]. As is well known in ~ consistent harmonic approximation, we consider a trial

quantum crystal theory, the SCPA is inadequate to descripg@miltonian

the melting of solidd6]. To overcome this limitation, Pro- 02 1

hofsky and co-workers, introduced a new self-consistent dis- _ n _ 2]

placement conditiotSCDQ and proposed a modified self- HO_E;‘ [W+ 2™ Xn-) } NVo, )

consistent phonon approa¢MSPA) [7]. Using the MSPA,

they studied a simple model of the hydrogen bonded ammowherex,, is the displacement of theth molecule from its

nia chain[8]. Although it is an imaginary system, hydrogen equilibrium position in the harmonic chain. Assuming the

bond chains or rings do widely exist in nature, especially inlattice constant for the harmonic chain describedgyto be

biological systems. Examples are short-lived chains in wateiR;, which is to be fixed later, we relatg, to y, through

organic solutions or hydrate crystals, and short structural wa-

V() =Vo{l-exf —a(r—R)1>-Vo, (1)

: 2

ter chains in enzyme®,10]. There are also hydrogen bond- Xn—Xn—1tR1=¥Yn—VYn-1. (4)
ing networks, for which the model may provide an approxi-
mation for a special dimensiofil0]. With this ammonia The free energyr, of the trial system is
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FO=,B‘1; In[2sink( 3 BA w,) ]+ N V. (5)
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According to the Gibbs-Bogoliubov inequality, the free en-or

ergy F of the original system satisfies
F$F12F0+<H_H0>O, (6)
where we have used the notation

_ Trléexp(—BHo)]
(O)0= Tifexp— BHo)] -

In fact, F4, giving the upper bound of the actual free energy

F, is the first order of the cumulative expansionFfwith

respect to the trial system. The lower the free endtgythe
closer is the trial system to the real one. So minimizihg

dF; NJD 1 D2V (R _ 1
96 = 2 9gl@REDIDV'(RN-¢]=0, (19
$p=exp(3 DI V"(Ry). (16)

The HamiltonainH is independent oRy, soF, would
be also. Under the periodic boundary condition
kRr=—a+2mn/N, n=1,2,...,N. A direct estimation of
F, from Eq. (5) will also show its independence &%, i.e.,
dFo/dRr=0. From Eqgs(8) and(12) we find

IFy p(D (92) , B
——=Nex E(y—‘sz(RT)—O. (17)

Equations(16) and (17) are self-consistent conditions to

optimizes the approximation. Moreover, the inequality cangetermine the trial harmonic Hamiltonian. Using a Fourier
also be taken as a validity criterion for different approximatey, s nsformation. we may express them as

trial Hamiltonians. MinimizingF,; with respect to its two

parametersp) andR;, we have

Fi_, @
ap
E—O (8)
IRy

= ij dgex —qu JduV’(R +u)elau
27 2 T

+ 00 u2 + o
%JAs—RTdueXF(_ﬁ)V (RT+U) fs_RTdLI

u2
X exp( — ﬁ) , (18

which are the self-consistent conditions for the force constant

¢ and displacemerR;. Taking advantage of the harmonic

system, we can calculate

(H=Hg)o=N(V(y2—Yy1))o— N¢D/2, 9
where the correlation functioD is defined as
D=((X—X1)%o. (10

Using the formulas derived in the Appendix, we have

2%
D= WEK‘, i "coth(3 Bhay)sir?(3 kRy),  (11)

2

D ¢
(V(Y2—Y1))o= eXF(E (9_52) V(§)

=exp(3 D) V(Ry).
&= RT
(12)

V'(Ry+u)=0, (19)

u2
f duex;{ 5D
wheree is the truncation parameter for a hard core. The two
conditions(18) and (19) have the physical meaning that the
effective force constant is not the local force constant at the
potential minimum, but the thermodynamical average of
force constants, and the equilibrium position is determined
by averaging force. That is, p=(V"(Ry))s, and
(V'(Ry1))o=0. They are coupled with each other, and must
be solved self-consistently.
In the MSPA, the equilibrium position is instead deter-
mined by

VIRr+ u(T)]=V[Ry—u(T)], (20

where w(T) is the half-width of the weight function
exp(—u?/2D), i.e., expfu?2D)=1/2, and is regarded as a

As given in the Appendix, the dispersion relation of the one-classical oscillatory amplitude. In this way, the equilibrium

dimensional(1D) harmonic system is

4¢

Vsmz(% kRy). (13

2__
Wy =

From Egs.(5) and(13) we have

ﬁFO . (9F0 &wk_ l ND 14
ip T oo dp 2 (14

position is taken at the midpoint of two classical turnaround
points fixed byu [7].

In Ref. [11], discussing the dissociation of a hydrogen
bound in a dimer molecule, such as an ammonia dimer based
on SCPA, Galindo and Sokoloff employed another different
self-consistent condition for the equilibrium position, i.e.,

d
d—RT<V(RT)>o=0- (21)

where Eq.(11) has been used in deriving the last equality. This version of SCPA shall be referred to as the revised

Thus, from the definition6) of F, and Egs.(7), (12), and

(14), we find

self-consistent phonon approa@RSPA. The previous con-
dition (19) implies that
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FIG. 1. Dependence of the effective chain crystal consignt FIG. 2. Effective force constant as a function of temperature.

on temperature. Curves are labeled bg,™*“ M,” and “R” for

SCPA, MSPA and RSPA, and by numbers “2.5" and “0” for the For ¢=2.5 A both SCPA and RSPA show that the system
corresponding cases with and without a hard coreef25 A, just undergoes a linear thermal expansion with increasing

respectively. temperature, and no melting happens in the temperature re-
. ) gion considered.
_— _u As discussed in Sec. I, far=0 RSPA almost coincides
duex V(Rr+u) ) _ i
dRrJe—Rrr 2D with SCPA. Taking typical value®;=4.0 A andD=0.4

(6—Ry)? AZ?, we have estimated(0)~10"° and §(2.5)~0.02. This
= _ETRU = 22 explains the difference between SCPA and RSPA seen at
ex V(e)=6(¢g). (22

2D e=2.5 A. At a very low temperaturd) is rather small, so

When |e —R¢|>D, e.g., for the case without a hard core, the_fjlﬁerenge is also significantly Teduced- .
8(£)~0. The difference between SCPA and RSPA is very (ii) Effective force constant. In Fig. 2 we plot the effective

small. force constant as a function of the temperatufe As far as
In Sec. Ill we shall compare these three kinds of self-Mmelting is concerned, Figs. 1 and 2 are consistent. At the
consistent conditions numerically. melting temperature a sharp dropdnis seen. Generally, the
MSPA harmonic chain is much softer than the other two.
Il NUMERICAL COMPARISON Furthermore, both MSPA and RSPA show an unreasonable

growth of ¢ with increasing temperature dt>500 K for
As in Refs.[8] and[11], the Einstein approximation for £=2.5 A.

the phonon spectrum is also adopted in our calculation. Al- (iii) Free energy. The free enerfy as a function ofT is
though the Morse potential already includes some hard corghown in Fig. 3. In the low temperature regit®-200 K),
effect[12], a hard cores was set in Refs[8] and[11]. In  three approaches give approximately the same free energy
order to make a better comparison, we consider both casdsr both hard core parameters. When the temperature in-
with, as well as without, a hard core. In RE8] no hard core creases, the discrepancy among the three approaches be-
e was explicitly given, while in Ref[11] a hard core of comes prominent. The MSPA gives a free energy much
¢=2.8 A was chosen. To reproduce results similar to thenigher than those of SCPA and RSPA, and the SCPA always
references we set=2.5 A. Results corresponding to the gives the lowest free energy. If we regard the Gibbs-
three different equilibrium position conditiori$9), (20), and  Bogoliubov inequality as a criterion for the validity of ap-
(21) are marked with 'S,” “ M,” and “R,” respectively.  proximation, the MSPA is the poorest. Moreover, near the
Numbers “0” and “2.5” are used to distinguish the case MSPA melting temperature the MSPA free energy for both

without a hard core from that with a hard core. =0 and 2.5 A violates the convexity condition, exhibiting
(i) Thermal expansion. The effective crystal const&at an unphysical negative special heat.
as a function of the temperatur® is plotted in Fig. 1. (iv) Ratio of (H—Hg), to Fy. RegardingF, as the first-

A sharp growth ofR; is found for MSPA withe=2.5 A,  order cumulant expansion, we plot the rafie—Hg)o/F as
indicating a “reasonable” melting temperature around 377a function of T in Fig. 4. In a wide temperature region the
K. When the temperature is higher than 377 K, no self-absolute value of this ratio is within 0.05 for SCPA and
consistent solution exists for MSPA. For SCPA and RSPARSPA. On the contrary, the ratio is beyond 0.2 near the
with e=0 a comparable sharp growth Ry is seen at a MSPA melting temperature 377 K. Higher-order terms
temperature near 1300 K, which is much higher than 377 Kshould be very important for MSPA.
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APPENDIX
s 02 According to the theory of lattice dynami€$3], we rep-
) resentx,, andp,, as
=
% 1/2
to—imkR imk
= —_— +
-0.25 Xm Ek (ZNka (ace 2™,
N M\ 2 ) )
Pn=2 i( k) (afe ™ F-ae™R), (A1)
03} N K 2N
s
- ' where we have denoted the lattice constanRoinstead of
0 100 200 300Té18[(1)>E1§2(1)"Ugg(()K)700 800 900 1000 Ry . Substituting Eq(AL) into the Hamiltoniar(3) and drop-
ping the trival termNV,, we find
FIG. 3. Comparison of free energy as a function of temperature. é

1 2%
Curves from top, in succession, are MSPA witk 2.5, MSPA with Ho= 2 —ﬁwk(alaﬁ )+ 2 —sinz(%kR)(aﬂ:aknL 1)
£=0, overlapping curve of SCPA and RSPA with=-0, RSPA k 2 Kk Moy
with e=2.5 and SCPA withe =2.5, respectively.
=2 hogalact), (A2)
IV. CONCLUSION 3

We have compared three self-consistent phonon apwhere in writing the last equality we have deduced the dis-
proaches: SCPA, MSPA, and RSPA, which differ from eachpersion relation(13).
other in the condition for the effective crystal constant. At  Defining
low temperature the three approaches give almost the same
result. The SCPA and RSPA, giving a very high temperature _ h
for a rapid lattice softening, are inadequate for describing di= 2NMaw,
melting. Although MSPA is able to provide a reasonable
melting temperature, the approach itself, violating the conwe have
vexity condition for free energy near this melting tempera-

1/2 ) _
) (eflmkR_eflnkR), (A3)

ture, is not valid for that temperature region. To describe the e o _ * +
phenomenon of melting new approaches have to be devel- Xmn=Xm X“_; (di @t di). (A4)
oped.
Thus,
L D= (Xardo
0.0 22 lZ |dil X1l (aal + afay) |l ye ™ Alkt H2hey 7,
k
1+e Phox
-0.05 =; m|dk|2, (A5)
2 -0.1 whereZ, is defined by
7 e~ (1/2) phay
-0.15 Zk: 1_e—ﬁﬁmk . (A6)

From Egs.(A3) and (A5), we obtain

hoo 1
Dinn= iy - COtNz Bhw{1—cod (m—n)kRl}.

0 100 200 300 400 500 600 700 800 900 1000 (A7)
TEMPERATURE(K)

-0.25

By noticing D=D; Eq. (11) is verified.
FIG. 4. Dependence of the rat{¢1 —Hg)o/Fo on temperature. Let us introduce
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we obtain

m+n)!
(nlexp(y*a+ yah)|ny=e~ W2 |7|2m( )
m

We then have (mt)®nt”

(A12)

(exp(Xmndg))o =< ;{E (¥ a+ ya)) > By means of the binomial expansion

k
0 oo

m+n)!
<1x>m12(,, , (A13)

=11 (expiviact nab)o, (A8 io min!

from Egs.(A12) and (A13) we have
where

1 1
17 (expl v axt "}’kal)>0:exr{|'yk|2 —§+m”
(exp( 7 axt viay))o= Z nE—:o (nlexply@ct viah)ng
=

=exp zcoth 5 Bhwy)|yd?]. (Al4)

Xe—ﬁ(nk+ l/Z)flwk. A9
(A9) Finally, we reduce Eq(30) to
Using the formulas
= 1 1 2
e7*3+’yaT: o aeya*e(lIZ) sz (AL0) (exp(Xmnde))o eXF{ 2 Ek: coth(3 Bhwy)| }
(m+m)1| 12 =exp(3Dmnd?), (A15)
eyalﬂ) 2 (7) (—) Im+n), (A11) _—
which is the same as E@l2) for D=D,;.
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